

Tutorial Irradiation Embrittlement and Life Management of RPVs

RPV Design: Materials and Stressors M. Brumovsky

RPV IS A UNIQUE COMPONENT, AS :

- NUCLEAR REACTION IS REALIZED INSIDE RPV
- RPV CONTAINS WHOLE NUCLEAR FISSION MATERIALS
- RPV CONTAINS PRACTICALLY ALL RADIOACTIVELY INDUCED MATERIALS
- RPV CANNOT BE PRACTICALLY COOLED DOWN IF IT RUPTURED, THEN NON-CONTROLLED CORE MELTING TAKES PLACE

DUE TO A LARGE VOLUME OF REACTOR ACTIVE CORE TO PRODUCE REQUIRED HEAT OUTPUT, AND DUE TO HIGH OPERATION CONDITIONS: - RPV IS A LARGE AND HEAVY COMPONENT

- RPV IS PRACTICALLY NON-REPLACEABLE
- MUST BE SAFE DURING WHOLE LIFETIME
- RPV MUST FULFIL THE MOST SEVERE REQUIREMENTS TO MATERIAL QUALITY

RPV CONSISTS FROM THE FOLLOWING MAIN PARTS:

- RPV BODY (LOWER PART)
 - BELTLINE REGION AS THE MOST DAMAGED BY RADIATION
 - INLET AND OUTLET NOZZLES FOR WATER COOLANT
- RPV COVER WITH NOZZLES/PENETRATIONS FOR CONTROL ROD MECHANISMS, IN-PILE MEASUREMENTS
- BOLTING JOINTS
- FREE FLANGE (IN SOME OLD DESIGNS)

RPV MUST ENSURE LONG TERM AND SAFE OPERATION UNDER CONDITIONS OF HIGH PRESSURE, TEMPERATURE AND RADIATION

RPV MUST WITHSTAND EFFECTS OF SEVERAL STRESSORS RESULTING FROM OPERATING CONDITIONS PRESSURE: 12 – 18 MPa TEMPERATURE: 270 – 325 °C NEUTRON FLUENCE: 10¹⁸ – 2x10²⁴ m⁻² (En > 1 MeV)

RPV STRESSORS

Ageing factors, basic ageing mechanisms and possible consequences. A major stressor in an ageing structure is time itself. (For example, in the embrittlement of rubber and plastic materials in components)

RPV STRESSORS

Ageing factors, basic ageing mechanisms and possible consequences. A major stressor in an ageing structure is time itself. (For example, in the embrittlement of rubber and plastic materials in components)

RPV MATERIALS GENERALLY MUST HAVE:

- HIGH TENSILE PROPERTIES AT OPERATING TEMPERATURES (Rp0,2 and Rm)
- HIGH RESISTANCE AGAINST NON-DUCTILE FAST FRACTURE IN THE WHOLE RPV THICKNESS (K_{JC})
- HIGH RESISTANCE AGAINST RADIATION DAMAGE AN D THERMAL AGEING AT OPERATING CONDITIONS
- VERY GOOD WELDABILITY
- GOOD TECHNOLOGICAL OPERATION

RPV DESIGN AND MATERIALS ARE DEFINED BY CODES AND STANDARDS, e.g. PWR : ASME KTA RCC-M JSME

WWER : PNAE-G = PWR TYPE REACTOR DESIGNED ACCORDING TO RUSSIAN CODES AND STANDARDS

FIG. 6. Comparison of PWR and BWR RPVs with the same output.

Upper part of RPV

1 welding of circumferential welds 2anticorrosive cladding 3mechanical and heat treatment 4quality inspection

1 welding of circumferential welds 2anticorrosive cladding 3mechanical and heat treatment 4quality inspection

RPV assembly

welding of circumferential weld no.4
2anticorrosive cladding of a zone under weld no.4
3mechanical and heat treatment
4quality inspection

TYPICAL TECHNOLOGY PROCESS FOR WWER-1000 RPV

Ø

bture

PWR	VVER
3 – 4 LOOPS	6 LOOPS – VVER-440
	4 LOOPS – VVER-1000
1 NOZZLE RING – IN + OUT	2 NOZZLE RINGS
	RING INLER + RING OUTLET
IN-WELDED NOZZLES	MECHANICALLY MACHINED
	NOZZLES (VVER-440)
	NOZZLED HOT FORGED OUT (VVER-
	1000)
1 ST RPV GENERATION – WELDED	ALL GENERATIONS –ONLY FORGED
PLATES	RINGS
2 ND RPV GENERATION – FORGED	1 ST RPV GENERATION- SOME
RINGS	WITHOUT CLADDING
LATESTS RPVs – NOZZLE-FLANGE	
RING (cca 500 t)	MAXIMUM INGOT MASS – 195 t
MATERIALS (HISTORICALLY)	MATERIALS
ASTM A-212 B (C-Mn)	VVER-440 – 15Kh2MFA (Cr-Mo-V)
ASTM A-302 B (Mn-Ni-Mo)	VVER-1000 – 15Kh2NMFA (Ni-Cr-Mo-V)
ASTM A-533 B/A 508 (Mn-Ni-Mo)	
ONLY ELECTRIC FURNACES	SM + ELECTRICAL FURNACES
ONE LAYER CLADDING	TWO LAYERS CLADDING
TRANSPORT ON WATER	TRANSPORT ON LAND

RPV DESIGN IMPROVEMENTS

apture

- REMOVAL OF AXIAL WELDS
- DECREASE OF NUMBER OF AZIMUTHAL WELDS
- REMOVAL OF WELDS FROM THE BELTLINE REGION

STRESSES IN RPV UNDER NORMAL(STABLE) **OPERATING CONDITONS, I.E. ONLY FROM** PRESSURE, CAN BE EXPRESSED BY THE **SIMPLIFIED EQUATION:**

 $\sigma = p \cdot R / S$

WHERE $\sigma - STRESS$ p – PRESSURE **R – RPV MEAN RADIUS S – RPV WALL THICKNESS**

STRESS INTENSITIES (I.E. ALLOWED STRESSES) IN RPV UNDER NORMAL OPERATING CONDITIONS ARE USUALLY DEFINED AS:

SI^{PWR} or $[\sigma]^{WWER} = min (Rp0.2/n_{Rp}, Rm/n_{Rm})$

SAFETY FACTORS n_{Rp} AND n_{Rm} ARE DEFINED BY CODES:

FOR PWR : $n_{Rp} = 3/2$, $n_{Rm} = 3$ FOR WWER: $n_{Rp} = 1.5$, $n_{Rm} = 2.6$

MATERIAL	USED FROM THE YEAR	STEEL TYPE	HEAT TREATMENT	Rp 0,2 at 20°C (minimum MPa)	Rm at 20°C (MPa)	A5 at 20°C (minimum %)
PLATES						
A 212B	1955	C-Mn	HR or N	262	483-586	22
	1000	· · · · · ·				
A 302B	1960	Mn-Mo	Q/T oro N/T	345	552-689	20
A 302B (modifikovaná)	1965	Mn-Mo-Ni	Q/T	345	552-689	20
A 533 Gr.B Class 1	1967	Mn-Mo-Ni	Q/T	345	620-793	18
20MnMoNi55	1974	Mn-Mo-Ni	Q/T	440	590-740	18
15Kh2MFA	1960	Cr-Mo-V	Q/T	431	539-735	14
FORGINGS						
A 105	1955	C-Mn	A or N	248	483 min.	22
A 182	1956	Mn-Mo	A or N/T	276	483 min.	22
A 350-82	1956	Mn-Ni	A or N/T	207	414 min.	22
A 336 (modified)	1965	Mn-Mo-Ni	Q/T	345	550 min.	20

A 508 Class 2	1961	Mn-Mo-Ni	Q/T	345	550-725	18	
A 508 Class 3	1965	Mn-Mo-Ni	Q/T	345	550-725	18	
20MnMoNi55	1974	Mn-Mo-Ni	Q/T	440	590-740	18	
22NiMoCr37	1980	Mn-Mo-Ni	Q/T	440	590-740	18	
16 MN D5	1978	Mn-Mo-Ni	Q/T				
15Kh2MFA	1960	Cr-Mo-V	Q/T	431	539-735	14	
15K2NMFA(A)	1975	Cr-Ni-Mo-V	Q/T	490	608	15	
15Kh2NMFA Class 1	2000	Cr-Ni-Mo-V	Q/T	490	608	15	
15Kh2V2FA	2005	Cr-V	Q/T				
15Kh2MFA-A mod.A	2009	Cr-Mo-V	Q/T				

HR = HOT ROLLED, A = ANNEALED, N = NORMALIZED, N/T = NORMALIZED AND TEMPERED, Q/T = QUENCHED AND TEMPERED

Devianation							Elements	(mass %))					
Designation	С	Si	Mn	Р	s	Cr	Mo	Ni	v	Cu	Al	Sn	Ν	As
ASTM A 302B	max 0.25	0.15 0.30	1.15 1.50	max 0.035	max 0.040		0.45 0.60							
ASTM A 336, Code Case 1236	0.19 0.25	0.15 0.35	1.10 1.30	max 0.035	max 0.035	max 0.35	0.50 0.60	0.40 0.50	\wedge					
ASME A 508 Cl 2 (1971)	max 0.27	0.15 0.35	0.50 0.90	max 0.025	max 0.025	0.25 0.45	0.55 0.70	0.50 0.90	max 0.05					
ASME A 533 GR B (1971)	max 0.25	0.15 0.30	1.15 1.50	max 0.035	max 0.040	,	0.45 0.60	0.40 0.70						
ASME A 508 Cl 2 (1989) ^a	max 0.27	0.15 0.40	$0.50 \\ 1.00$	n.9x 0015	р.ах 0.015	0.25 0.45	0.55 0.70	0.50 1.00	max 0.05	max 0.15				
ASME A 508 Cl 3 (1989) ^a	max 0.25	0.15 0.40	1.20 1.50	max 0.015	max 0.015	max 0.25	0.45 0.60	0.40 1.00	max 0.05					
ASME A 533Gr B (1989)	max 0.25	0.15 0.40	1.15 1.50	max 0.035	max 0.040		0.45 0.60	0.40 0.70						
16 MnD5 RCC-M 2111 ^b	max 0.22	0.10 0.30	1.15 1.60	max 0.02	max 0.012	max 0.25	0.43 0.57	0.50 0.80	max 0.01	max 0.20	max 0.040			
18 MnD5 RCC-M 2112 (1988)	max 0.20	0.10 0.30	1.15 1.55	max 0.015	max 0.012	max 0.25	0.45 0.55	0.50 0.80	max 0.01	max 0.20	max 0.040			
20 Mn Mo Ni 5 5 (1983, 1990) ^{c,d}	0.17 0.23	0.15 0.30	1.20 1.50	max 0.012	max 0.008	max 0.20	0.40 0.55	0.50 0.80	max 0.02	max 0.12e	0.010 0.040	max 0.011	max 0.013	max 0.036
22 Ni Mo Cr 3 7 (1991) ^r	0.17 0.23	0.15 0.35	$0.50 \\ 1.00$	max 0.012	max 0.008	0.25 0.50	max 0.60	0.60 1.20 ⁸	max 0.02	max 0.12e	0.010 0.050	max 0.011	max 0.013	max 0.036

^a Supplementary Requirement S 9.1(2) and S 9.2 for A 508 Cl 2 and A508 Cl 3.

^b Forgings for reactor shells outside core region. Restrictions for core region (RCC-M 2111): S ≤ 0.008, P ≤ 0.008, Cu ≤ 0.08.

^c VdTÜV Material Specification 401, Issue 1983.

^d KTA 3201.1 Appendix A, Issue 6/90.

^e Cu-Content for RPV (core region) shall be ≤0.10%.

^t According to Siemens/KWU under consideration of SR 10 (MPA Stuttgart).

8 For flanges and tube sheets the Ni content shall be ≤1.40%.

REACTOR PRESSURE VESSELS-3

CHEMICAL COMPOSITION OF WWER FORGING AND WELD MATERIALS (mass%)

MATERIAL	Ċ	Mn	Si	Р	s	Cr	Ni	Мо	v
WWER-440	0.13	0.30	0.17	max	max	2.50	max	0.60	0.25
15Kh2MFA	0.18	0.60	0.37	0.025	0.025	3.00	0.40	0.80	0.35
Submerged arc weldSv-	0.04	0.60	0.20	max	max	1.20	max	0.35	0.10
10KhMFT + AN-42	0.12	1.30	0.60	0.042	0.035	1.80	0.30	0.70	0.35
Submerged are weldSv-	0.04	0.60	0.20	max	max	1.20	max	0.35	0.10
10KhMFT + AN-42M	0.12	1.30	0.60	0.012	0.015	1.80	0.30	0.70	0.35
Electroslag weld	0.11	0.40	0.17	max	max	1.40		0.40	0.17
Sv=13Kh2MFT + OF-6	0.16	0.70	0.35	0.030	0.030	2.50		0.80	0.37
WWER-1000	0.13	0.30	0.17	max	max	1.80	1.00	0.50	max
15Kh2NMFA	0.18	0.60	0.37	0.020	0.020	2.30	1.50	0.70	0.10
Submerged are weldSv-	0.05	0.50	0.15	max	max	1.40	1.20	0.45	
12Kh2N2MA + FC-16	0.12	1.00	0.45	0.025	0:020	2.10	1.90 ^x	0.75	
Submerged arc weld	0.05	0.50	0.15	max	max	1.40	1.20	0.45	-
Sv-12Kh2N2MA +FC-16A	0.12	1.00	0.45	0.012	0.015	2.10	1.90 [×]	0.75	

RESISTANCE AGAINST NON-DUCTILE (BRITTLE) FRACTURE IS CHARACTERIZED BY so-called TRANSITION TEMPERATURE:

 $\begin{array}{l} \mathsf{PWR}-\mathsf{RT}_{\mathsf{NDT}} \text{ DETERMINED FROM DWT (DROP} \\ \text{ WEIGHT TEST) AND CHARPY V-NOTCH IMPACT} \\ \text{ TESTS} \\ \text{WWER}-\mathsf{T}_{\mathsf{K0}} \text{ DETERMINED FROM CHARPY V-} \\ \text{ NOTCH IMPACT TESTS ONLY} \end{array}$

RPV MATERIALS/WELD METALS OF GENERATION I:

- NO REQUIREMENTS FOR COPPER CONTENT
- USUALLY MILD REQUIREMENTS FOR PHOSPHORUS CONTENT :
- PWR WELDMENTS
 - HIGH CONTENT OF Cu (up to approx. 0.40 mass %),
 - MEDIUM CONTENT OF PHOSPHORUS
- WWER WELDMENTS
 - HIGH CONTENT OF P (up to approx. 0.040 mass %
 - INCREASED CONTENT OF Cu (up to approx. 0.20 mass %)

REQUIREMENTS FOR BELTLINE RPV MATERIALS

MATERIAL	P	S	Cu	As	Sb	Sn	P+Sb+Sn		Co
GENERATION II									
15Kh2MFAA	0.012	0.015	0.08	0.010	0.005	0.005	0.015	0	.020
15Kh2NMFAA	0.010	0.012	0.08	0.010	0.005	0.005	0.015	0	.020
A 533-B, Class 1	0.012	0.015	0.10						
16 MnD 5	0.008	0.008	0.08						
20 MnMoNi 55	0.012	0.012	0.10	0.036		0.011			
GENERATION III									
SA-508 Grade 3	0.010	0.010	0.03						
Class 1									
SA 533-B									
16 MnD 5	0.008	0.008	0.08						
15Kh2NMFAA	0.010	0.012	0.08	0.010	0.005	0.005	0.015		

RPV MATERIALS trend in decrease of Cu+P contents

REQUIREMENTS FOR ACCEPTANCE TESTS ARE GIVEN IN CODES (GENERALLY) AND IN MANUFACTURING AND DESIGN DOCUMENTATION ACCEPTANCE TESTS SERVE FOR PERMISSION TO USE GIVEN MATERIAL/COMPONENT RESULTS OF ACCEPTANCE TESTS SERVE AS A BASIS FOR LIFETIME EVALUATION DURING OPERATION ACCEPTANCE TESTS MUST CHARACTERIZED REAL **PROPERTIES OF USED MATERIALS IN A CONDITION OF RPV START OF OPERATION (i.e. DELIVERY FROM THE** SHOP TO THE NPP)

ACCEPTANCE TESTS ARE USUALLY PERFORMED IN THE FOLLOWING STAGES OF MANUFACTURING:

- PLATES/FORGINGS AFTER INITIAL HEAT TREATMENT, i.e. AFTER Q+T (OR N+T) FROM ADDITIONS
- WELDING MATERIALS (WIRES, STRIPS, FLUX)
- WELDING JOINTS ON WELDING COUPONS MADE BY THE SAME TECHNOLOGY AS RPV (USUALLY WITH LIMITED TIME VALIDITY)
- BM AND WM AFTER FINAL HEAT TREATMENT OF RPV
- SURVEILLANCE SPECIMENS AFTER FINAL HEAT TREATMENT OF RPV (FROM WELDING COUPON)

SPECIMENS FOR ACCEPTANCE TESTS ARE USUALLY CUT FROM ¼ OF RPV WALL THICKNESS REASON FOR SUCH LOCATION IS:

- MATERIAL PROPERTIES IN THE MIDDLE PART (BETWEEN ¼ AND ¾ OF WALL THICKNESS ARE PRACTICALLY CONSTANT)
- POSTULATED CRACK DEPTH FOR ASSESSMENT OF RPV RESISTANCE AGAINST NON-DUCTILE FAILURE WAS INITIALLY TAKEN AS ¼ OF WALL THICKNESS

ACCEPTANCE TESTS SEGREGATION IN INGOT

Figure 4-3. Macrostructure of metal in heavy steel ingots: a – crystallization zones by solidification

b - macro segregation pattern.

ACCEPTANCE TESTS SEGREGATION OF C IN FORGED RING

TEST RESULTS DEPEND ALSO ON ORIENTATION OF TEST SPECIMENS

FIG. 1 Crack Plane Orientation Code for Rectangular Sections

FIG. 3 Crack Plane Orientation Code for Bar and Hollow Cylinder

DUE TO LARGE DIMENSIONS OF INGOTS AND LARGE THICKNESS OF FINAL COMPONENTS, **NON-HOMOGENEITY EXISTS WITHIN THE** COMPONENT THIS NON-HOMOGENEITY IS NECESSARY TO TAKE INTO ACCOUNT IN RPV LIFETIME AND INTEGRITY ASSESSMENT VALUES OF SUCH SAFETY FACTOR (REPRESENTING NON-HOMOGENEITY) CAN BE **GIVEN IN CODES**

RADIATION DAMAGE TAKES PLACE IN THE BELTLINE REGION NEUTRON FLUX DISTRIBUTION ON THE RPV WALL DEPENDS ON:

- REACTOR OUTPUT
- ACTIVE CORE GEOMETRY (QUADRATIC- PWR/ HEXAGONAL-WWER)
- THICKNESS OF WATER REFLECTOR
- MOVEMENTS/POSITION OF CONTROL RODES
- FLUX CHANGES IN HORIZONTAL AND AXIAL DIRECTIONS AND ALSO THROUGH RPV WALL

. OPERATING LIFETIME FLUENCE FOR WWERS, PWRS AND THE BWR

REACTOR TYPE	FLUX, n.m ⁻² .sec ⁻¹	LIFETIME* FLUENCE, n.m ⁻²
	(E>1MeV)	(E>1MeV)
WWER-440 core weld	1.2×10^{15}	$1.1 \ge 10^{24}$
WWER-440 maximum	$1.5 \ge 10^{15}$	1.6 x 10 ²⁴
WWER-1000	$3-4 \ge 10^{14}$	$3.7 \ge 10^{23}$
PWR (W)	4 x 10^{14}	4 x 10^{23}
PWR (B&W)	$1.2 \ge 10^{14}$	$1.2 \ge 10^{23}$
BWR	4×10^{13}	4×10^{22}

NEUTRON FLUX/NEUTRON FLUENCE ARE DEFINED USUALLY AS:

- PWR WITH ENERGIES LARGER THAN 1 MeV
- WWER WITH ENERGIES LARGER THAN 0.5 MeV
 - THERE IS NO CONSTANT RATIO BETWEEN THESE TWO FLUXES, DEPENDS ON NEUTRON SPECTRUM
 - THUS, DIFFERENT FOR DIFFERENT LOCATION, DIFFERENT REACTORS (POWER vs. EXPERIMENTAL), THROUGH WALL THICKNESS
- dpa DISPLACEMENT PER ATOM FOR THE WHOLE ENERGY SPECTRUM

1.3 0.8

RADIATION DAMAGE IS USUALLY EXPRESSED AS:

- RADIATION HARDENING

- USUALLY NO PREDICTIVE FORMULAE IN CODES

- RADIATION EMBRITTLEMENT

- PREDICTIVE FORMULAE IN CODES DIFFER FOR DIFFERENT MATERIALS/ COUNTRY OF PRODUCTION:
 - US NRC REG.GUIDE 1.99/10 CFR 50.61A/ASTM E 900-2,
 - RCC-M/RSE-M FIM (BASE METAL), FIS (WELD METAL) FRANCE
 - KTA 3201, 3203 GERMANY
 - JEAC 4201-200 JAPAN
 - PNAE-G 7-002-86, IAEA TECDOC 1442 WWER-440
 - RD EO 1.1.2.09.0789-2009 WWER-1000

TRANSITION TEMPERATURE SHIFT IS DEFINED:

PWR – FOR ENERGY 41 J, ONLY

WWER – FOR ENERGY THAT DEPENDS ON ACTUAL YIELD STRENGTH OF MATERIAL (i.e. WITH INCREASING FLUENCE THIS VALUE IS ALSO INCREASING)

MAIN AGEING MECHANISMS THERMAL AGEING

DEPENDS ON RPV MATERIAL

- PWR STEELS

- NOT MENTIONED IN CODES, i.e. NOT TAKEN INTO ACCOUNT
- WWER STEELS
 - PNAE-G 7-002-86 FOR 15Kh2MFA(A) : ΔTt = 0 °C
 - RD EO 1.1.2.09.0789-2009 FOR 15Kh2NMFA(A): ΔTt = f(t, Ni)

MAIN AGEING MECHANISMS FATIGUE

FATIGUE IS MOSTLY PRONOUNCED IN:

- NOZZLE REGION (HIGH STRESS CONCENTRATION),
- NOZZLE PENETRATIONS IN COVER
- BOLTING JOINTS (LARGEST DAMAGE, BUT BOLTS ARE REPLACEABLE

MAIN AGEING MECHANISMS CORROSION

INNER SURFACE OF RPV SHOULD HAVE TO BE PROTECTED BY ANTICORROSIVE LAYER PRACTICALLY ALL RPV ARE COVERED BY AUSTENITIC **CLADDING (ONE OR TWO LAYERS) MADE BY STRIP** WELDING UNDER FLUX OR MANUALLY (ONLY SEVERAL FIRST WWER-440/v-230 TYPE RPVs WERE COVERED ONLY **IN NOZZLE REGIONS)** PWR HAVE MOSTLY NON-STABILIZED AUSTENITIC OUTER LAYER WWER HAVE AUSTENITIC OUTER LAYER STABILIZED BY NIOBIUM **PWR USED NI-BASED ALLOYS FOR BUTTERING/ DISSIMILAR WELDS** WWER USED ONLY AUSTENITIC STABILIZED STEELS

Boric acid corrosion of outer surfaces

IN-SERVICE INSPECTION

IN-SERVICE INSPECTION IS A MANDATORY PART OF SAFE OPERATION:

- PERIODIC

- NON-DESTRUCTIVE TESTING DURING OUTAGES
- SURVEILLANCE SPECIMEN PROGRAMMES (DESTRUCTIVE)

- CONTINOUS

- TEMPERATURE AND PRESSURE MEASUREMENTS
- NEUTRON DOSIMETRY IN OUTER SURFACE (CAVITY)

TYPICAL RPVs

QUENCHING

TYPICAL RPVs

A 315-TON HOLLOW INGOT PROVIDES STARTING MATERIAL FOR A LARGE FORGED SHELL RING (AFTER MIYANA OF KAWASAKI STEEL)

TYPICAL RPVs

WELDING OF CLADDING

MACHINING

WWER-440 RPV

TYPICAL PWR RPV

Comparison of IIIrd generation RPVs

RPV	AP 1000 Westinghouse (USA)	EPR AREVA (France)	ASE 92 Atomstrojexport (Russian)
Material	A-508 Grade 3 Class 1 A-533-B	16 MND 5 ¹⁾	15Kh2NMFA, ²⁾ 15Kh2NMFA-A 15Kh2NMFA Class 1
Concentration of Cu, P, S, As, Sb, Sn in beltline region	Cu < 0,03 P < 0,010 S < 0,010	Cu < 0,08 P < 0,008 S < 0,008	Cu < 0,08 P < 0,010 ³⁾ S < 0,012 As < 0,010 Sb < 0,005 Sn < 0,005
Number of circumferential welds in beltline	0	1	2
EOL fluence	7,0 x 10 ¹⁹ n/cm ² (E > 1 MeV)	1,2 x 10 ¹⁹ n/cm ² (E > 1 MeV)	3,7 x 10 ¹⁹ n/cm ² (E > 1 MeV)
Surveillance programme	Specimens on active core basket	Specimens on active core basket	Specimens on inner RPV wall
Lifetime (EOL)	60	60	60 + 20
RPV diameter, length, wall thickness (without cladding)	4,470 mm, 10,256 mm 200 mm	5,385 mm, 13,078 mm 250 mm	4,585 mm, 11,185 mm 195 mm
RPV mass (transportable)	296 t	405 t	320 t
Code	ASME, Sekce III	RCC-M, (ASME)	PNAE-G, GOST
Output	1100 MWe	1600 MWe	1000 MWe

CONCLUSIONS

RPV ARE UNIQUE REACTOR COMPONENTS WITH HIGHEST REQUIREMENTS FOR ENSURING INTEGRITY AND SAFE OPERATION DURING WHOLE LIFETIME UNDER ALL OPERATIONG **CONDITIONS/REGIMES** MAIN FAILURE MECHANISM CAN BE NON-**DUCTILE/FAST FRACTURE** MAIN DAMAGING MECHANISM IS RADIATION DAMAGE PRONOUNCED AS RADIATION HARDENING AND EMBRITTLEMENT

THANK YOU FOR YOUR VERY KIND ATTENTION

